Acta Crystallographica Section C

## Crystal Structure

Communications
ISSN 0108-2701

# 2-Acetamido-N-benzyl-2-(methoxyamino)acetamides: functionalized amino acid anticonvulsants 

Arthur Camerman, ${ }^{\text {a }} \ddagger$ Andrew Hempel, ${ }^{\text {b }}$ Donald Mastropaolo ${ }^{\mathrm{a}}$ and Norman Camerman ${ }^{\mathrm{a}, \mathrm{b}_{*}}$<br>${ }^{\text {a }}$ Ardono Research, 341 101st Avenue SE, Bellevue, WA 98004, USA, and<br>${ }^{\mathbf{b}}$ Department of Biochemistry, University of Toronto, Medical Sciences Building, Toronto, Canada M5S 1A8<br>Correspondence e-mail: norman.camerman@utoronto.ca

Received 29 April 2005
Accepted 9 May 2005
Online 11 June 2005
In the crystal structure of 2-acetamido- N -benzyl-2-(methoxyamino) acetamide ( $3 L$ ), $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$, the 2-acetylaminoacetamide moiety has a linearly extended conformation, with an interplanar angle between the two amide groups of 157.3 (1) ${ }^{\circ}$. In 2-acetamido- N -benzyl-2-[methoxy(methyl)amino]acetamide ( 3 N ), $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$, the planes of the two amide groups intersect at an angle of $126.4(4)^{\circ}$, resulting in a chain that is slightly more bent. The replacement of the methoxyamino H atom of $3 L$ with a methyl group to form $3 N$ and concomitant loss of hydrogen bonding results in some positional/thermal disorder in the methoxy(methyl)amino group. In both structures, in addition to classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, there are also weak non-standard $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The hydrogen bonds and packing interactions result in planar hydrophilic and hydrophobic areas perpendicular to the $c$ axis in $3 L$ and parallel to the $a b$ plane in the $N$-methyl derivative. Stereochemical comparisons with phenytoin have identified two O atoms and a phenyl group as molecular features likely to be responsible for the anticonvulsant activities of these compounds.

## Comment

The title compounds, 2-(acetylamino)- $N$-benzyl-2-(methoxyamino)acetamide ( $3 L$ ) and its $N$-methyl derivative ( $3 N$ ), are members of a series of functionalized $\alpha$-heteroatom-substituted non-naturally occurring amino acids synthesized and tested for anticonvulsant activity (Kohn et al., 1991). These two compounds were the most potent of the group, demonstrating median effective dose values required to prevent maximal electroshock seizures in mice comparable to the well known antiepileptic drug phenytoin. We determined the crystal structures of $3 L$ and $3 N$ in order to investigate the stereochemical basis for their anticonvulsant properties.

[^0]The structure of $3 L$ is presented in Fig. 1. The asymmetric unit contains one molecule, with atoms C7-C13 extended

linearly, and with the two amide-group planes (atoms C7/N8/ $\mathrm{C} 9 / \mathrm{C} 10 / \mathrm{O} 14$ and $\mathrm{C} 10 / \mathrm{N} 11 / \mathrm{C} 12 / \mathrm{C} 13 / \mathrm{O} 18$ ) intersecting at an angle of $157.3(1)^{\circ}$. The $\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 11-\mathrm{C} 12$ torsion angle is -160.9 (2) ${ }^{\circ}$. The $s p^{3}$-hybridization of atom N 15 is indicated by the sum of the bond angles at this atom ( $319.4^{\circ}$ ). Four standard hydrogen bonds, weak non-standard $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) and van der Waals interactions are the main contributors to the crystal packing. The molecules are packed in head-to-head and tail-to-tail fashions, creating distinct hydrophilic and hydrophobic regions running perpendicular to the $c$ axis, as shown in Fig. 2. The $3 N$ chain conformation (Fig. 3) is a little more curved, with an angle of 126.4 (4) ${ }^{\circ}$ between the two planar amide groups (atoms C7/N8/C9/C10/


Figure 1
The molecular structure of $3 L$, showing $50 \%$ probability displacement ellipsoids.


Figure 2
A stereodiagram of the molecular packing and hydrogen-bond scheme (dashed lines) in $3 L$. Atoms are drawn as circles of arbitrary radii.

O 14 and $\mathrm{C} 10 / \mathrm{N} 11 / \mathrm{C} 12 / \mathrm{C} 13 / \mathrm{O} 18)$. The $\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 11-\mathrm{C} 12$ torsion angle is $-128.5(10)^{\circ}$. The replacement of the H atom at N15 in $3 L$ with the methyl group in $3 N$ results in a much weaker hydrogen-bonding scheme, with only two classical N $\mathrm{H} \cdots \mathrm{O}$ interactions producing infinite molecular chains parallel to the $a$ axis (see Table 2). Van der Waals forces and non-standard hydrogen bonds also contribute to the crystal packing, creating planar hydrophillic and hydrophobic areas parallel to the $a b$ plane. The weaker hydrogen-bonding interactions are very probably responsible for abnormal displacement ellipsoids and mild disorder in the $\mathrm{N} 15, \mathrm{O} 16$, C 17 and C18 positions, as well as high displacement parameters for some other atoms. Despite these problems, the overall conformational structure of the molecules in the solid state is undoubtedly established.

We have compared the structures of $3 L$ (Fig. 4) and $3 N$ (Fig. 5) with that of phenytoin (Camerman \& Camerman, 1971), a chemically different clinically used anticonvulsant, in order to correlate pharmacological properties with stereochemical features. The structures were superposed by maximizing the fit of three atoms in each, viz. O14, O16 and C6 in $3 L$, and $\mathrm{O} 14, \mathrm{O} 16$ and C 5 in $3 N$, with the two carbonyl O


Figure 3
The molecular structure of $3 N$, showing $50 \%$ probability displacement ellipsoids.
Figure 4


Superposition of $3 L$ and phenytoin (large circles, solid bonds).


Figure 5
Superposition of $3 N$ and phenytoin (large circles, solid bonds).
atoms and atom C 15 (for $3 L$ ) or C 19 (for $3 N$ ) in phenytoin. Atom O16 was chosen, rather than the second carbonyl O atom in $3 L$ and $3 N$, because pharmacological evaluations have shown that a functionalized O atom located two atoms removed from the $\mathrm{C} \alpha$ atom is necessary for maximal activity in the series tested (Kohn et al., 1991). To yield better phenylgroup fits, rotations of $80^{\circ}$ about $\mathrm{C} 7-\mathrm{N} 8$ and $90^{\circ}$ about C6C7 were performed for $3 L$, and a single rotation of $65^{\circ}$ about C6-C7 was performed for $3 N$. The superpositions show that the O atoms in each molecule can occupy similar positions in space (small movements of the methoxy O atoms in $3 L$ and $3 N$, via $\mathrm{C} 10-\mathrm{N} 15$ bond rotation, would make the correspondences exact), and the hydrophobic phenyl groups can also occupy similar regions. Since these are the stereochemical determinants of phenytoin anticonvulsant activity (Camerman \& Camerman, 1981), the results indicate that the similar activity of these compounds could be mediated through mechanisms similar to those of phenytoin.

## Experimental

Compounds $3 N$ and $3 L$ were supplied by Dr H. Kohn (Kohn et al., 1991). After extensive crystallization experiments, crystals of $3 L$ were obtained by slow evaporation from a $1: 1$ benzene-chloroform solution at 278 K . The crystals took the form of small colorless needles, generally of low quality. Crystals of $3 N$ were obtained by slow evaporation from a 1:1 chloroform-toluene mixture and were of poor quality. Additional crystallization trials to produce better crystals were unsuccessful.

## Compound 3L

## Crystal data

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \\
& M_{r}=251.29 \\
& \text { Orthorhombic, } P b c n \\
& a=17.998(5) \AA \\
& b=7.112(3) \AA \AA \\
& c=20.390(6) \AA \\
& V=2610.0(15) \AA^{3} \\
& Z=8 \\
& D_{x}=1.279 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$ radiation
Cell parameters from 32
$\quad$ reflections
$\theta=19-44^{\circ}$
$\mu=0.77 \mathrm{~mm}^{-1}$
$T=294(2) \mathrm{K}$
Needle, colorless
$0.47 \times 0.11 \times 0.07 \mathrm{~mm}$

Data collection
Picker FACS-1 four-circle diffractometer
$\theta / 2 \theta$ scan
Absorption correction: $\psi$ scan (North et al., 1968)
$T_{\text {min }}=0.900, T_{\text {max }}=0.944$
2225 measured reflections
2225 independent reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.146$
$S=1.00$
2225 reflections
172 parameters
H atoms treated by a mixture of independent and constrained refinement

1655 reflections with $I>2 \sigma(I)$
$\theta_{\text {max }}=65.0^{\circ}$
$h=0 \rightarrow 21$
$k=0 \rightarrow 8$
$l=0 \rightarrow 23$
3 standard reflections every 100 reflections intensity decay: $1.9 \%$

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0284 P)^{2}\right. \\
\quad \\
\quad+2.7803 P] \\
\quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.16 \text { e } \AA^{-3} \\
\text { Extinction correction: } S H E L X L 97 \\
\text { Extinction coefficient: } 0.0045(3)
\end{array}
\end{aligned}
$$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.102$
$w R\left(F^{2}\right)=0.250$
$S=1.12$
1145 reflections
174 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /[ \sigma^{2}\left(F_{o}^{2}\right)+(0.0768 P)^{2} \\
&+2.5323 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.53 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

Table 2
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$ for $(3 N)$.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| N8-H8 $\cdots \mathrm{O}^{2} 4^{\mathrm{v}}$ | 0.86 | 2.05 | $2.901(10)$ | 172 |
| N11-H11 $\cdots$ O18 $^{\text {vi }}$ | 0.86 | 2.11 | $2.950(9)$ | 165 |
| C10-H10 $\cdots$ O14 |  | 0.98 | 2.59 | $3.428(11)$ |
| C10-H10 $\cdots$ O18 | 0.98 | 2.47 | $2.823(12)$ | 144 |
| C13-H13B $\cdots$ O18 |  |  |  |  |

Symmetry codes: (v) $x+1, y, z$; (vi) $x-1, y, z$.
Table 1
Hydrogen-bond geometry ( $\AA{ }^{\circ},^{\circ}$ ) for $3 L$.

| $D-\mathrm{H} \cdots A$ | D-H | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| N8-H8 . ${ }^{\text {O }} 18^{\text {i }}$ | 0.86 | 2.53 | 3.212 (3) | 137 |
| $\mathrm{N} 11-\mathrm{H} 11 \cdots \mathrm{O} 14$ | 0.86 | 2.40 | 2.687 (3) | 100 |
| N11-H11...O14 ${ }^{\text {ii }}$ | 0.86 | 2.37 | 3.163 (3) | 153 |
| N15-H15 $\cdots$ O18 ${ }^{\text {iii }}$ | 0.90 (3) | 2.39 (3) | 3.221 (4) | 153 (3) |
| $\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 16^{\text {iv }}$ | 0.97 | 2.47 | 3.399 (4) | 161 |
| $\mathrm{C} 7-\mathrm{H} 7 B \cdots \mathrm{O} 14^{\text {v }}$ | 0.97 | 2.48 | 3.359 (4) | 151 |
| C13-H13A . ${ }^{\text {O }} 14^{\text {ii }}$ | 0.96 | 2.38 | 3.290 (4) | 157 |

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $\quad-x+\frac{1}{2}, y-\frac{1}{2}, z$; (iii)
$-x+1,-y-1,-z+1$; (iv) $x, y+1, z ;$ (v) $-x+\frac{1}{2}, y+\frac{1}{2}, z$.

## Compound 3 N

## Crystal data

$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=265.31$
Triclinic, $P \overline{1}$
$a=4.859(2) \AA$
$b=10.587(3) \AA$
$c=14.168(4) \AA$
$\alpha=86.84(2)^{\circ}$
$\beta=80.66(3)^{\circ}$
$\gamma=80.28(3)^{\circ}$
$V=708.6(4) \AA^{\circ}$
$Z=2$
$D_{x}=1.244 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 32 reflections
$\theta=23-45^{\circ}$
$\mu=0.74 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Needle, colorless
$0.42 \times 0.09 \times 0.08 \mathrm{~mm}$
Data collection
Picker FACS-1 four-circle
$R_{\text {int }}=0.085$
$\theta_{\text {max }}=45.0^{\circ}$
$h=-4 \rightarrow 0$
$k=-9 \rightarrow 9$
$l=-12 \rightarrow 12$
3 standard reflections every 100 reflections intensity decay: $2.7 \%$

All H atoms for both compounds, except for atom H 15 on N15 in $3 L$, could be located in difference maps and were subsequently allowed for as riding atoms. For $3 L$, one overall isotropic displacement parameter was refined for methyl H atoms and another for the remaining H atoms $\left[U_{\text {iso }}(H)=0.116(7)\right.$ and $0.079(4) \AA^{2}$, respectively]. For $3 N$, the corresponding values are 0.123 (16) and 0.099 (15) $\AA^{2}$. The range of $\mathrm{C}-\mathrm{H}$ distances is $0.93-0.98 \AA$, and the amide $\mathrm{N}-\mathrm{H}$ distances are $0.86 \AA$. The $\mathrm{N} 15-\mathrm{H} 15$ bond length in $3 L$ is $0.90(3) \AA$.

For both compounds, data collection: Picker Operating Manual (Picker, 1967); cell refinement: Picker Operating Manual; data reduction: DATRDN: The X-ray System (Stewart, 1976); structure solution: SHELXS97 (Sheldrick, 1997); structure refinement: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1843). Services for accessing these data are described at the back of the journal.

## References

Camerman, A. \& Camerman, N. (1971). Acta Cryst. B27, 2205-2211.
Camerman, A. \& Camerman, N. (1981). Acta Cryst. B37, 1677-1679.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kohn, H., Sawhney, K. N., LeGall, P., Robertson, D. W. \& Leander, J. D. (1991). J. Med. Chem. 34, 2444-2452.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Picker (1967). Picker Operating Manual. Picker, Cleveland, Ohio, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stewart, J. M. (1976). DATRDN: The X-ray System. Technical Report TR-446 of the Computer Science Center, University of Maryland, College Park, Maryland, USA.


[^0]:    $\ddagger$ Deceased.

